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Autoregressive Spectral Estimation in Additive Noise

DONALD F. GINGRAS, MEeMBER, 1IEEE, AND ELIAS MASRY, FELLOW, IEEE

Abstract—The estimation of the spectral density of a discrete-time
stationary Gaussian autoregressive (AR) process from a finite set of
noisy observations is considered. A modified spectral estimator based
on the high-order Yule-Walker equations is considered. Joint asymp-
totic normality of this spectral estimator is established; a precise
asymptotic expression for the covariance matrix of the limiting distri-
bution is obtained. The special case of AR (1) plus noise is considered
in some detail.

[. INTRODUCTION

N this paper, the problem of estimating the spectral

density of a discrete-time stationary Gaussian autore-
gressive (AR) process from a finite set of noisy observa-
tions is considered. AR spectral estimation techniques are
widely used in signal processing applications. They are
meaningful when the underlying process is well modeled
by an AR random process and the resulting spectral esti-
mate will exhibit, for small sample size, increased reso-
lution (see Kaveh and Cooper [l] and Beamish and
Priestly [2]) over that obtained by the nonparametric
smoothed periodogram. In practice, the observation pro-
cess has a noise component and the usual noise-free AR
spectral estimate is no longer adequate, especially when
the signal-to-noise ratio is low. A modified estimate is
considered and its asymptotic statistical properties are de-
veloped.

Let X = {X,} - _» be a real-valued autoregressive
process of order p, AR( p), with spectral density ¢( \)
and let {W,} - _. be a white noise process. The ob-
served process ¥ = { Y, }7_ _, isdefined by {Y, = X, +
W,} and let ¥( \) denote its spectral density. The prob-
lem being considered is the estimation of the spectral den-
sity ¢ ( A\) of the AR(p) process X from a finite set of
noisy observations { ¥, }~_,.

For the noise-free case, the asymptotic statistics for the
estimates of the AR parameters were rigorously estab-
lished by Mann and Wald [3]. They proved that the esti-
mates were consistent, that their limit distribution was
normal and calculated the asymptotic covariance. Akaike
[4]. starting with the asymptotic results of Mann and Wald
[3] for the parameters’ estimates, and assuming that the
order p is known, proved that the asymptotic distribution
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Statistical Signal Analysis Program. The work of E. Masry was supported
by the Office of Naval Rescarch under Contract NOOO14-84-K-0042.
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for the corresponding AR spectral estimate is normal and
calculated 1ts covariance. Berk [5], under the assumption
that the order of the AR process goes to infinity as the
number of observations tends to infinity, proved that the
distribution of the AR spectral estimate is asymptotically
normal with asymptotic variance identical to that of a
truncated periodogram.

The problem of AR parameter estimation for the AR
plus noise case was first examined by Walker [6] who
evaluated the asymptotic efficiency and variance for the
parameter estimate of a first-order AR process. Pagano
(7], noting that the correct mode! for an AR ( p) plus noise
process is an autoregressive-moving average (ARMA)
process of order ( p, p), developed strongly consistent and
efficient AR parameter estimates through the use of non-
linear regression. Lee [8] examined the multivariate AR
plus noise case and proved asymptotic normality for es-
timates of the AR parameters based on the high-order
Yule-Walker equations. However, his results, which de-
pend on a central limit theorem of Billingsley [9], are not
substantiated as shown in Section V. For the univariate
AR (p) plus noise case, asymptotic normality for esti-
mates of the AR parameters, based on the high-order
Yule-Walker equations, was established by Gingras [10)].

In this paper, we consider the estimation of the spectral
density ¢ ( N\) of an autoregressive process AR( p) from
a finite set of noisy observations; the spectral estimate
én (M) utilizes AR parameters’ estimates, based on the
high-order Yule-Walker equations. The goal of the paper
is to establish the asymptotic statistics of the spectral es-
timate ¢y ( A). The organization of the paper is as fol-
lows. In Section II, the basic assumptions are set down;
the estimates for the parameters and the spectral density
&)N () are defined. The main results are presented in Sec-
tion IIT where the joint asymptotic normality of ¢y ( \) is
established along with an expression for the asymptotic
covariance. In Section IV, the special case of AR(1) plus
noise is considered in some detail, and a performance
comparison to the noise-free case is presented. Appendix
A contains the proofs of certain lemmas used in the
derivation of the main results, and Appendix B contains
detailed calculations of variance and covariance expres-
sions. Throughout this paper, vectors are denoted by lower
case letters and matrices are denoted by upper case letters;
hoth are indicated by boldface type.

II. PRELIMINARIES

Throughout this paper, the signal X = {X,}7. .« is
assumed to be a stationary Gaussian AR ( p) process. Such

0096-3518/88/0400-0490301.00 © 1988 IEEE
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a process has the representation

X,,—a,X,,_l— - aX

pAn—p = En>

n=0.il,'-- (1)

where the innovations process {¢,} is a sequence of in-
dependent identically distributed Gaussian random vari-
ables 91(0, o7). The AR parameters {a; } /., are con-
strained such that the polynomial

P
A(2) = _Eb a,:’(ao = —-1)

has no zeros inside the closed unit circle {z: [ z| < 1}.

The spectral density ¢ ( A) of the process X is given by
2y

g /2%

p ..
ll -2 aje_"’"\

j=1

o(N) = (2)

The noise process W = { W, } - .. is assumed to be a
sequence of independent identically distributed Gaussian
random variables 91 (0. o% ). Moreover, the processes X
and W are assumed to be independent.

The observation process Y = {Y,} 7. _ is defined by

Y,,=X,,+W,,; n=0, 1, ---.

The spectral density Y ( \) of the process { ¥, } is given
by

Y(N) = o3/27 + &(N). (3)

The process Y is then an ARMA (p, p) series with rep-
resentation (see Walker [6] and Pagano [7])

Y, —a Y, — : ~apYn—p

6.+ W, —a W, — c—a,W,_, (4)
for all n. Denote the covariance sequence of the series Y
by {r.} where r, = E[Y,Y, _,]. Multiplying (4) through
by Y, ., and taking expectations, we obtain the Yule-

Walker (Y-W ) equations:

rr;—a;r|*"'—a,,r,,=af+o%y (5)
e Aoy T T T Qphe-p = —akoa;
forl = k=<p
(6)
re=ar, = —apr o, =0, forkzp+ |
(7)

The set of p equations in (7) corresponding to k = p +
I, - -+ . 2pis often referred to as the high-order Yule-
Walker equations. We express this set in matrix form as

Ra = b

where the (p % p) covariance matrix R is defined by

(8)

491
r o1 c

R=| P S (9)
Fp-1 Tp-2 """ I

and the ( p X 1) vectors a and b are defined by

r
',a,,)

b = (rp+1v Tps2y ° 7

a = (al, a,,
r
) ) .

Given a finite set of noisy observations { ¥} .,, N >
2p. we estimate the covariance sequence {r,} using

N-lk|
) [(1/1\/) 2 YVYaiw, |klsN-1
r‘V.k= n=1
Lo, [k|>N-1 (10)

When the elements of the matrix R and vector b are re-
placed by their corresponding estimates (10), the esti-
mated matrix and vector will be denoted by Ry and by,
respectively. Using the high-order Yule-Walker equa-
tions (8), we define the vector estimate dy of the AR pa-
rameters as the solution of the equation

Rydy = by. (11)

To estimate the AR spectral density ¢( A}, we require
estimates of the AR parameters such as those formed by
(11) and an estimate of . An estimate of ¢* can be ob-
tained by first using (5) to provide an estimate of o} +
ofy and then using one of the equations (6), say k = p, to
obtain an estimate for ¢3. This yields

p p
&i’,e = —,Z d,v.jf,v.j - (l/dN.p) Z éN.ij.p—j (12)
j=0 j=0
where dy o = —1 since @y = —1. Note that for large N,

dy , is necessarily nonzero since dy, converges almost
surely to a, (see Lemma 1 in Section III below), and a,
# 0 since the order of the process X is p. The spectral
estimate ¢y ( A) is now defined by

0%./27

aiv( A) =

. (13)

p 3
1 - 20 ay,e
j=1r

For the sake of compactness of notation, we let

9 =

2

(o7. (14a)

be the vector of parameters to be estimated and 0 be its
estimate

aj. - .a,,)T

~ . .
Oy = (0.\‘,“ dy.)s

(14b)

In the subsequent development of asymptotic statistical
properties for the parameter and spectral density esti-
mates, we make use of the following vectors and matri-
ces. some of which have been defined previously, but are
presented here for convenient reference:

-, aN.p)T~
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T

c=1(ro.r, " ,ry) (15a)

b= (-1 rpen ) (15b)
a=(aa; ‘ap)r (15¢)
a=(a a1 a) (15d)
d:("" o) (15¢)

= (perpors o) (15f)

UN) = [, (M)]e - (15¢)

e, (N) = et h g lthmi0N

0=(0.0-,0) (15h)

where the dimension of the null vector 0 will be clear by
the context in which it is used.

In the next section, we make repeated use of the follow-
ing results, regarding convergence in probability 5 and

convergence in distribution ﬂ, the proofs of which can
be found in Rao [11].

Proposition 1: For each integer N = 1, let ny and {y
be random vectors and let @ and B be constant vectors;
then

£

P P
=N ~0-= ‘](C\ -0 (16a)
P P T, P 1
woe =iy~ af (16b)
P £ £
|‘I.v - Qv’ =0, L ~C=n 3 (16¢)

ITII. STATISTICAL PROPERTIES

In this section, we establish the joint asymptotic nor-
mality of the spectral estimate ¢y (A) and provide a
closed-form expression for its covariance matrix (Theo-
rem 3). Since the statistical properties of the covariance
estimates Fy, (10) are well known (see Brillinger [12]),
the method of analysis adopted in this paper is to establish
asymptotic equivalence in probability between the error
vector (dy — a) and appropriate linear combinations of
{Fvi — rk}i o (Lemma 2); similarly, we establish such
an equwalence relationship for the innovation variance’s
error 65, — o (Lemma 3). Using these relatlonshlps the
statistical properties of the errors (dy — a) and a,v_( -
ol can be established from those of {7y ,}. These two
lemmas and their derivations are the crux of the analysis
leading to the main result (Theorem 3). For the sake of
readability. we have delegated the complex derivation of
Lemma 3 (as well as that of Lemma 2) to Appendix A.

A. Statistics of Parameters’ Estimates

It should be noted that in [10], the asymptotic normality
of the AR parameters’ estimates (dy) was established.
However, this result does not lead directly to the joint
asymptotic normality of &%, and dy in view of the depen-
dence of 6%, on ay as well as on the covariance estimate
{7y, }. Lemmas 2 and 3, which were not developed in
(10}, provide an appropriate asymptotic reduction of 6

= (&%, 4% )7 in terms of the covariance estimates { n, b
This reduction makes it possible to establish the asymp-
totic normality of 8, and provide a convenient expression
for its asymptotic covariance L. In principle, one could
consider expressing oy . solely in terms of dy (by (12);
this would require writing the {7y } in terms of dy ) and
then applying the results of [10] for dy to establish asymp-
totic normality of @,; this approach does not appear to be
simpler in terms of the complexity of the derivations. In
this subsection, we establish the asymptotic distribution
for 8. First, we present the asymptotic distribution of the
covariance estimates of (10) as established by Brillinger
[12, p. 256].

Theorem 1: For the observation process Y, the covan-
ance estimate 7y , converges in quadratic mean to r, as N
— o with covariance

lim Ncov {Fyy, Py, }

N—w=
- 27I' ( {ei)\(j+k) + ei)\lj-lz)} ‘#2()\) d)\ (17)
J-x
Moreover the standardlzed estimates N'/2(7y, — ry),
N iyy — 1), , NV #y ,n — rn) are asymptoti-

cally jointly normal w1th zero means and asymptotic co-
variance given by the right side of (17).

Thus, the standardized vector estimate N'/%(éy — ¢) of
(15a) is asymptotically multivariate normal with zero
mean and covariance matrix given by

c)T}

lim cov {N'/*(éy — ¢), N'/*(éy -
N->

=21rS

The following lemma, whose proof is delegated to Ap-
pendrx A, establishes the almost sure convergence of
Rv and dy, as N = o, We remark that R ™' exists (see
Gersch [13]).

Lemma 1: Ry' exists almost surely for large N and
converges to R ™' as N = oo almost surely. Moreover, the
AR parameter estimate dy , converges almost surely to g,
asN > ofork=1,---,p. »

We next construct a random vector N'?zy that is equiv-
alent in probability to the high-order Y-W AR parameter
estimate vector N'/*(dy — a). The proof is given in Ap-
pendix A.

Lemma 2: Define the vector random variable zy by

U(X) ¥*(N) dx (18)

v = _'D(érv - c) (19)
and the matrix D by
D
0 ~a, —a,_, —-a, 1 0
=0 0 -gq, -a, 1 0
0 O 0 -a —a, 1
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Then

5 P
N'*|(dy — @) —zy; > 0asN > o,

(20)

We previously established an estimate (12) for the vari-
ance o’. The next lemma, whose proof is given in Ap-
pendix A, establishes the existence of a random variable
N' 3¢y that is equivalent in probability to N'/%(&%, —
o).

Lemma 3: Define the random variable { by

{v = hr(é;v -c) (21)
where
h=(-(-1.a",0") - (1/a,)(a’, —1,07)
. 0’
+ (d" + (l/ap)dT){R_'}D
+ (1/4,)((~1.a")d)[R"'D] ) (22)

and [A], denotes the pth row of the matrix A. Then

—of)—g',ylf’OasN—*oo.

A

N'2|(6%. (23)

The following result establishes the asymptotic nor-
mality of the vector estimate 0y. Its proof relies on the
equivalence relationships of Lemmas 2 and 3.

Theorem 2: The standardized ((p + 1) X 1) vector
estimate N'/3(8y ~ 0) is asymptotically multivariate nor-
mal, that is,

N' By - 8) D 9U(0. L) as N — oo

where
- '2 T,
r = ‘ g ‘ (24)
ls G
and
r® =21 S RTU(N) By (N) dN (25)
s =2r S R 'DU(N) Ry (N) dN (26)
G =2rn 5 R'DU(N) DT(R™") Y (N)yd\. (27)

Note that the dimensions of the matrices £ and G are (( p
+ 1) X (p + 1))and (p X p), respectively.
Proof : By definition, we have

Lol I
N

N] :(éy - 6) .
L a,

by Lemma 2. we have
h P
N' "I(d,v—a)—zl\r‘-*OasN—'oc (28)
where z, is defined in (19). Also, by Lemma 3, we have

) 2 P
N (65, —al) =ty 2 0asN = o

(27)
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where {y is defined in (21). Thus, it follows from (28)
and (29) that

hT
R™'D

N'/? i"OaSN—*m.

(- 0) - |

Jie- o

From Theorem 1, we have that N'/%(éy — ¢) is asymp-
totically multivariate normal; therefore, by (16c), it fol-
lows that N'/%(8y — 0) converges in distribution to a
multivariate normal vector with zero mean and covariance
matrix X which, by (18), is given by

x hT ; T .
L =27 S_t[R_ID]U(A)[h,D (R7') ] ¥7(N) dA.

(30)

The result follows. D

Theorem 2 establishes convergence in distribution of
the vector estimate N'/( éN — 0). It should be noted that
X is the covariance matrix of the asymptotic distribution.
This does not necessarily imply that the covariance of the
vector estimate N' /Z(GN — 0) converges to X of (30) (see
Serfling [14, p. 20)). For the sake of simplicity, however,
we refer to I as the asymptotic covariance inatrix instead
of the more accurate expression ‘covariance matrix of the
asymptotic distribution.’’ Similar terminology is used in
connection with the asymptotic properties of the spectral
estimate.

The components of the asymptotic covariance matrix &
can be evaluated using expression (3) for the spectral den-
sity ¥ ( A). The detailed evaluation of these terms is pre-
sented in Appendix B.

B. Statistics of Spectral Density Estimate

We now establish the joint limiting distribution of the
spectral estimates Sy (N, ", qkb‘v( A, ) at r distinct fre-
quencies A, * -+ , N\,. We make use of the following
theorem on nonlinear transformations of asymptotically
normal variates (Serfling [14, Theorem 3.3A]) which we
recast in our notation in the next lemma.

Lemma 4: Let éN = (9‘\’.1. SRR é,v.,,,)r be jointly
asymptotically normal random variables with mean vector
0 and covariance matrix k. i.e.,

N'3(By — 8) > 9L(0. L) as N — oo,

Letg(x) = (gi(x). - g (xN.x=(x. .5,
be a vector-valued function for which each component
g:(x) is real valued and has a nonzero differential g, ( 9;

tyatx = 0:
- 9g,
gu(®:1) = 2 = 7
;=1 ‘,/ =0
for any vector t = (7). C T
Put
do
r = l i
RV AP P
=0 .m




494 [EEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL. 36, NO. 4, APRIL 1988

Then
g(8y) = (2(8y). - . g (8))

is jointly asymptotically normal with mean g(0) and co-
variance matrix T 7. i.e.,

N'(g(8y) - g(8)) 5 9U(0, TET ") as N — oo.

Theorem 3: The standardized spectral density esti-
mates N' 2oy (N, -, NV 2oy () are jointly asymp-
totically normal, as N — oo, with means ¢(\,), -+ ,
é( \,) and covariance matrix TEL7, ie.,

N 2[‘5.\'(}\1) - ¢()\1)]- T
N 36y (M) = 6(A)] > 9(0, TEFT)  (31)
where the r X (p + 1) matrix I is given by
L=(p(N). -, p(\))T (32a)
and the (p + 1) X 1 column vector p( N) is defined by

p(N) = 6(N)[1/02 eT(N)] (32b)
with
e RS P T
N = 2R | Tt (20

Proof: Letm = p + 1. By Theorem 2, we have that
Ny — 8) 5 91(0,E)asN » o (33)
where 8 and Oy are given by (14). Now the spectral den-

sity ¢ ( A,) is a real-valued function of the parameter vec-
tor u, i.e., d(N\) = ¢,(n) where

po/2m
P z

ll - 2 ujeij)"‘
i=1

o(p) =

It is seen that the partial derivatives

9, ()

, J=01--,p

exist and are continuous in a neighborhood of p = 6.
Moreover, the gradient vector

pk(e)z [M’ ce

am(ﬂ)}’
96,

a6

P

is given by (32b). i.e., p(0) = p(A,). We note that
e( A) of (32¢) actually depends on 8 via A(e'*) which is
a function of {a, } 7_, [cf. (14a)]. Thus, p(\) of (32b)
depends implicitly on 8. Since at least the first component
of p,(9) is clearly nonzero, it follows that the differential

g.(8: 1) £ pl(8)1

is nonzero foreach k = 1, +, r. Lemma 4 now applies
with the identification g, x) = ¢,(x), and the result fol-
lows from (33). O

Theorem 3 establishes the joint asymptotic normality of
the scaled spectral estimate errors NYH GG (M) — o (N)]

and provides explicit expressions for the variance/covari-
ance of the joint asymptotic distribution. Using the de-
composition (24) for X, we have that the asymptotic co-
variance function of N'/2[$N( A) — ¢(MN)] and
N'?[ ¢y (v) — ¢(v)] appearing in the asymptotic distri-
bution (31) is given by

acov (N, v) = ¢(N\) ¢(») {(vz/af)
+e"(N)s/ol + sTe(v)/0?

+eT(N) Ge(u)}. (34a)

and if we set A = v, we obtain the asymptotic v riance
avar (\) ofN'/2[¢~( AY— ¢(N)] as

avar (A) = ¢%(\) {(vz/o‘:) +2e"(N\)s/a?
+e"(\) Ge(n)} (34b)

where 2, s, and G are given by (25), (26), and (27),
respectively.

Equations (34a) and (34b) represent fundamental
closed-form expressions for the asymptotic variance and
covariance functions, appearing in the joint asymptoti-
cally normal distribution of the spectral estimate of an AR
process in the presence of additive noise. Their complex-
ity, however, does not allow simple interpretation. Thus,
in the next section, we specialize to the case of a first-
order AR process and examine the dependence of the
asymptotic covariance function acov (A, ») on the fre-
quencies X and » and on the values of the AR parameter

X3 LR

a.
IV. THE AR (1) Case
The first-order AR process has the representation
X, —aX,_| = ¢, (35)

where the AR parameter “‘a’’ satisfies the condition —1
< a < 1. The spectral density for ¢ ( \) is given by

_ 0l/2x
¢()\)—[az—-2acos()\)+l]' (36)

In this case, the asymptotic covariance function acov ( A,

v) can be expressed directly in terms of the parameters a,

A
af, ow. We have

_ ool ¢

€

acov (A, v) v + dwso(N)

* [cos (X) = a] + d7sé(v)

< [cos (») = a] + (47)'Go(N) B(»)
* [cos (N) = a] [cos (v) - a]} (37a)
¢*(N)

avar (A) = 3

€

{U2 + 8wsp(N) [cos (N) — a]

+ (47)°Go(N) [cos (A) — a]'} (37)

where the scalar constants G, s, and '~ are given by
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1 — a?
G=(—-z——)7 (38)
a
o>
s=a—§{—a3(l +a) + (1 +ad)y
+2(1 - a?) (ok/0d) v} (39)
) 3a® + a?)
vt =t 4 2a -|»12 _2(1 az)
a’ (1l —a*) a(l —a’)
(1+a2)2 , 5 (2a* -1
+ 114(1 _ 02)7 + O, Ow aZ
_4a2——a+3+4(1+a2)
a P Y
4 ..
+ = (ow/ol)y - 7}
1+ a?)
+ ot,{(——z—zﬂ} + 20% (40)

where
v = {1 +2(o%/0e) (1 = a?) + (o} /02)(1 - a*)}.

From (37b), we see that the asymptotic variance
expression is composed of three terms. The first term
(1/0,)*¢*(\) v represents the contribution due to esti-
mating o, the second term

(l/a,)"'81rs¢3( A) [cos (N) — a]

is due to the covariance between the estimates 63 and 4,
and the third term

(1/0.)"(47)'Go*(N) [cos (A) — ]’

represents the contribution due to estimating the AR pa-
rameter ‘‘a.’’

We see that even for the AR(1) case, the asymptotic
variance expression for the spectral estimate, as given by
(37b)-(40), is a complicated function of the process pa-
rameters. To provide insight into the relationship between
the asymptotic variance and the process parameters 4, al,
o2, and X\, we evaluated (37b)-(40) for a few parameter
cases.

The dependence of the asymptotic variance on the sig-
nal-to-noise ratio af/[(l ~a’)ol]is fairly clear from
the expressions (37b)-(40) and is expected to be mono-
tonic. Fig. 1 exhibits the normalized asymptotic variance
avar ( A)/(bz( A\) as a function of the AR parameter *‘a’’
for a wide range of frequencies; the signal-to-noise ratio
is set to 1. More interestingly, we wish to compare the
normalized asymptotic variance avar (A)/¢’(A) to the
classical case of AR spectral estimation with no noise. If
we set 6% = 0 in (37b), we have for our spectral estimate
(13), which uses the high-order Yule-Walker equations,

avar (N) = (¢*(N)/a}) {vz + 8wsp(N)[cos (N) — a]
+ (47)'Ge (N [cos (N) - a]'}  (41)

495

XA = 0.2 radians

LOG VARIANCE

3]\ =1.0 radians

A = 2.8 radians

B U | 1
0.35 0.45 0.55

a 1

1
0.85 0.95

0.65 0.75

AR PARAMETER

Fig. 1. Normalized asymptotic variance avarf x)/¢2( A), (37b), versus AR
parameter value; signal-to-noise ratio is one.

where now

G = (1 ~a?)/a’

5 = (af/a3){(l +a?)(1 - a3)}
v = of

1+ a+4a® + 2a° + 6a* + 2a° + 24°)

'i' * S+ a) 5
(42¢)

On the other hand, for the classical AR spectral estimate,
which uses the standard Yule-Walker equations, the
asymptotic varance i3 2gain given by (41), but with

G=(1-a?) (43a)
s=0 (43b)
vt = 20¢ (43c)

(see Akaike [4]). Fig. 2 plots the ratio of the two asymp-
totic variances [(41) in conjunction with (42) divided by
(41) in conjuction with (43)] as a function of the AR pa-
rameter ‘‘a’’ for a wide range of frequencies. It can also
be seen from (42) and (43) that this ratio tends to infinity
as a — 0 and approaches 5 as a — 1. The larger asymp-
totic variance of our spectral estimate is basically due to
the use of the high-order Yule-Walker equations as seen
from the expressions (42) and (43) for G and vl

V. COMMENTS

It was noted in the wutroduction that the results of Lee
[8] regarding the asymptotic normality of the AR param-
eters in a multivariate AR plus noise model are not sub-
stantiated. We elaborate on this point in this section. In
order to prove the asymptotic normality in question, Lee
[8] invokes Theorem 21.1 of Billingsley [9]. This result
establishes a central limit theorem for certain nonlinear
transformation n,, = f(-* , 1y Eme Em+ry -7 ) Of
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A = 1.0 radians

\ = 2.8 radians

LOG RATIO

Q 1 1 . 1 i - 1 A
0.5 0.65 0.75 0.85

0.05 0.15 Q.25 0.35 0.45

AR PARAMETER

Fig. 2. Rativ of asymptotic variances. (41), with o2 = 0 divided by (41)
for the noise-free case versus AR parameter value.

statiornary ¢-mixing processes { & }. In order to use it,
Lee {8] should have shown that his observation process
{ v } (an ARMA (M. M) process) is ¢ mixing and its ¢-
mixing coeflicient ¢, satisfies

=
2 o< o
=1

{Billingsley {9. Theorem 21.1]). Lee (8, eq. (A10)-
(A19)]. unfortunately. is silent on both points. In fact,
Lee could ror have proven that these two conditions are
satisfied since it is known (see Gastwirth and Rubin [16])
that not cven AR processes are ¢ mixing. Consequently,
Lee s invocation of Theorem 21. 1 of Billingsley {9] is not
at alt substantinted and neither is his principal result.

V1. CONCLUSIONS

The results presented in this paper establish the joint
asymptotic normality o1 AR spectral estimates for the case
of noisy observations using the high-order Yule-Walker
equations: a precise asymptotic expression for the vari-
ance ot the limiting distribution is obtained. The paper
extends the previous noise-free work of Akaike [4].

The assumption of normality on the processes { X, } and
{W,} is not implicitly required to obtain asymptotic nor-
mality of the spectral estimate. However, in case these
processes arc not Gaussian, the asymptotic covariance
(17) in Theorem | for the estimates Py will contain an
additionul term involving the fourth-order cumulant of the
process § ¥, } tsee briilinger [12}): this term will propa-
gate via Lgmmas 2 and 3 to the asymptotic covariance of
the spectral estimate by (\).

APPENDIX A

Proof of Lemma 1: By (9), we have R =
[r,.. -, ]{’/7, By Gersch [13]. the matrix R is nonsin-
gular letR™ = [w . Clearly,

" det [ M, ]/det [R]

1/‘¢;>

w ’*-l

[

where M, , is the (i, j)th cofactor of R. The matrix R is
estimated by Ry = [r~p+, iy ],,-l where 7y , is given by
(10). Whenever RN is nonsingular with probability one,
we write

Py

R/; —.[WNIJ],I-|
where
= (=1)" " det [My,;]/det [Ry]. (A1)

By Parzen [15], 7y, converges to r, almost surely as N —~
o; hence, det [Ry] converges to det [ R] almost surely
as N = oo. Since det [R] # 0, as indicated above, we
have that with probability oue, det (Ry] # O for suffi-
ciently large N. For such an N, (Al) is clearly well de-
fined. Since det [M\,J ;] converges to det {M,, ] almost
surely as N — o, we have from (Al) that

i]/det [R] =

WWIJ

lell_’("l ! jdet[

almost surely as N = .
Since for large N, @y = R3 by, the almost sure con-
vergence of dy to a as N ~ oo follows from the almost

sure convergence of Ry and by to R™' and b.
respectively. =

Proof of Lemma 2: Define the vector vy by
vy = (y —a) — R™'D(éy — ¢). (A2)

By Lemma 1, Ry ' exists with probability one for large N.
Thus, for large N, we can write

é‘\,’ = R\;‘ﬁ‘\'.
Using (A3) in (A2), we get

Uy = (R?A‘Ilb‘\’ - a) -

(A3)

R 'D(éy - ¢)

= R‘;\?l(ﬁl\r - ﬁNa) - R_ID(é‘\; - C)
By the definiiion of D in the iciuima and (15a). it can be
seen that D(éy — ¢) = b, — Na thus,
vy = Ry'D(éy — ¢) — R7'D(éy — ¢)

I

(Ry' = R D(éy — ¢).

By Lemma 1, Ry' — R~ almost surely as N — oo,
and by Theorem 1, N'/*(éy — c) converges in distribu-
tion; thus, by (16a) applied to each component of vy, we
have that

Nl 2

in probability as N — oo. The result follows. C
Proof of Lemma 3: By (5), (6). and (12). which exist
for large N, we have

Q
-t

|
Q

"

}
M
{o 1
-
<

4
= (Vav2) v, i,

p
+ ar, + (l/a,,)lzs()ajr,,_/

(1/dy ) (-1, a5 d,
+(1/a)(~1.a")d.

Lal) dy -

j
!
8
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Expanding 1/d, , in a Taylor series
Vay, = 1/a, + (1/yx) (dx, — a,)
where vy € (dy ,. a,). we obtain

6i',_03=T|+T3+T3

with
T,=-(-1.d0)d,+(~-1,a")d (Ada)
To= (V) [-(-1.4%)dy + (~1.a7)d] (Adb)
To= ~ (13 dy, —a)(-1.al)dy.  (Ad)

We first show that

N T, +B + B 50 asN-a (AS)

where
B, =((—-1.4%) - (-1.a"))d (A6a)
B.=(-1.a")(dy — d). (A6b)

We have by (Ada) and (A6), after collecting terms,
N T, + B, + B

A

-1a’) = (~1.aD))(dy - d)|.
(A7)

Since by Lemmalwehd\e|(—l O-(-1l.a )1—*
0. and by Theorem 1. N' *(d, — d ) converges in distri-
bution as N — oo, (AS) follows by (16a).

Next we show that

N T, + B+ B 50

= N/

as N - o (AS8)
where

B, =(1/a)((-1.4%) — (-1,a"))d (A9a)

B, = (1/a)(~1.a")(dy — d). (A9b)
We have by (A4b) and (A9), after collecting terms,

N' 3| T, + By + B,|
= N (1/a) {((=1.a7)
- (-1.a]) (dy - )}

The result (A8) now follcws by the same argument em-
ployed earlier for (A7).
Now we show that

NUT, + Bl 20 asN—w (AlD)
where
B = (l/’(l,,)z(d\;.,, -a)(~-1,a")d
We have
NI+ B = |[(1/a,) (~1.a7) d
— (1/3)(~1. a}) d]
N Yy, - a,)l.
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As N — oo, we have d = d almost surely b ] Parzen {15],
dy — a almost surely by Lemma 1, and N'/ (aN.p - a,)
converges in distribution by Lemma 2. Moreover, |y, —
a,| = |dy, — a,| so that, as N = o, yy — a, almost
surely since the right side tends to zero by Lemma 1. The
result (A10) now follows by (16a).

By (AS), (A8), and (A10), it follows that

N]/’( ON.e “03)‘31 — B, — By
~B,—B| 50 asN-ow (All)
By the definition of B, and B,, we have
N} (B, + By) = N' ((~1.a")(dy - d)
+ (1/a) (=1,a7)(dy - d))

and by augmenting the vector (~1, @’ ), we write this in
the form

N'(B, + By) = N'F(( -1, a’. 0")

+(1/a,)(a’. —=1,07))(éy — ¢)
= N (hT + hi)(éy - ¢) (A12)
where
= (=1,a" 0" (Al3a)
hy = (1/a)(a”. -1,07)", (A13b)
Next by the definition of B, and B;, we have
N'(B, + B;) = N'*Z{(d + (1/a,) d)’
(=180 - (-1.aT))}.

We need to express this in terms of (éy — ¢). To this end,
we note that by Lemma 2, we have

N"":‘[(—l, aly - (-1, aT)T]

o’ . p
-~ R D(éy~¢)|— 0
and thus,
, P
N'Z|B + B —hl(éy—c)| >0 asN-
(Al4)
where
Tr 0I T
h, = ((d +(1/a,)d) ‘ g ‘D) C(A13¢)
i
Finally. by the definition of Bs. we have

N' By = N :[ l/a) dy, = a,,)(—l,ar)d]

and by Lemma 2, we have
N'3|(ay, ~ a,)

- R P
~{R D] (éy —¢)] =0

as N -+ o
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so that

N By —hI(éy —c)] %0 asN = oo (Al5)

where

he = (1/a,V((~1, a")d[R™'D]]). (AI3d)

Thus. with h = h, + n, + h; + h,, the result follows
from (All) using (A12)-(A15).

AppPENDIX B
In this Appendir, the evaluation of the covariance
expressions 7, s, and G, stated in (25), (26), and (27),
1s given. The following lemma is needed.
Lemma Bl: We have

~nT

a) 2n 5 A'(e ™) e™ Y (N) dh
~0; m > 2p
pﬁ
of 2 Ay, -4 p<m=<2p
k=m-~p

p-m

0?4' kzo aay, . + 20%{/0§akak—m
4 2
Voot o anym O=sm=<p
L
b) 27r5 A(e ™) A(e™) e™ Y2 (N) dN
X
p

2, .
Lacr,.

y

2 1 > 22 .
g r, + oy k;o Gy o + 0RO 0 s

m>p
:‘\ OSmSp

C) I S A(ex)\)A(e-t)\) f’l(n_M))\l//z()\) d\

p-in-m|

_ 4 )
= Oy %‘ akak&in—m!
2 2 2
+ OwG, 0 + O,

where the {a, } £y are the AR parameters of (1), (g, =
—1). the {a; } 7o are the cocthicients of the power series
expansion for 1 /A(z), and §, ,, is the Kronecker delta.
Proof . In the course of the proof, we require the
power series expansion
o0
1/A4(z) :kZ‘ a2k (B1)
-0
Since A(2) 1s a polynomial of order p with no zeros in
{z: 12| = 1}, then the expansion exists and converges
uniformly in ]z} < 1.
a) Let

b

T(m) =27 A'(e ) ™Y N) dN

T

T,\(m) + Ty(m) + Ty(m)

it

(B2)

where by (2) and (3)

T\(m) = (1/27) o}y g-: A’(e ) e™ dn (B3)
T,(m) = (1/27)20% 02 S_rA?((ie—,-;—))e'"')‘ d\ (B4)
Ty(m) = (1/27) o S_t [A—::?T]zd)\. (BS)

Evaluating each term (B3), (B4), and (B5), we get

PP "
T\(m) = (014//27r)k2: 2 aa S g krImmN g\

=0,=0
[ 0; m > 2p
: P
- { ka:§_ Qlpm-; p<m=72p

(B6)
Next
T Ae™™)
- A(e™)
and by (B1) and exchanging of integration and summa-
tion, we have

eim)\ dx

Tim) = (2040?/27) |

p .
T,(m) = (20%;,03/2%) kzo 'Zo a; S e ik=i—mk gy
i .,
0; m>p
_ J20koiga m=p (B7)
p
2030! k; Gy _my 0= m<p.
For T5(m), we have
x imX\
T,(m) = (03/211') j %d)\
“r [A4(e™)]
[0; m >0 (
- B8
030102 m=20 )
by (B1). The result follows by (B2)-(B8).
b) Let
T(m) = 27 S A(e™) A(e™™) 6™ YN dN
= T\(m) + Ty(m) + T3(m) (B9)

where by (2) and (3)
T\(m) = (1/2x) o}, S A(e™) A(e ™) e™ dn

(B10)
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T.(m) = (1/27)20%0? g e™ d\ (B11)
x eim)\
T3(m) = (1/21)0? S_r ZW—) dn. (BIZ)

Proceeding as in part a), we obtain

(0: m>p
T, (m) = p-m
l 10‘&- EO aa,.,, 0=m=p (BI3)
T:(m) {0; m>0 (B14)
~lm = " 5
" 200:; m=20
and
olr,; m >0
Tm) =} " (B15)
O:.ry — oOwo,; =

and the result follows.
¢) The proof follows directly from that of part b). ([

A. Evaluation of G

For notational convenience in the calculation below, we
will not display the dependence on A for the matrix U. Set

B =27 g DUDTY3(\) dX; (B16)

then G = R 'B(R')" by (27). We evaluate explicitly
the elements [B], ,, of B. We denote the n, mth element
of the matrix DUDT by

2 2p
[DUDT]n,m = k§0 Jgo dn_kuk,jdm_j

nm=1,2,---.p

where d, , is the n, kth element of the matrix D and i ; is
the &, jth element of the matrix U. Using the definition of
U (15g) and D (Lemma 2), we have

n+1+p
[DUL ]"'m =, 2 a,,-kt,,”e'“
m=1+p
,:ﬁ?, @y _jemer(e? + €7

MDY

Az(e_,)\) etlpsnsmel

+ A(e ) A(e'M) e

(B17)

Substituting (B17) into (B16) and using parts a) and ¢) of
Lemma B1, we obtain the final result:

p-ln-—m|

(8], = oW Gy s (n-m)

2
+ owofé,,',,, + olr

e'n-—-m:

(B18)
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B. Evaluation of s
Put

n=2x S DUR*(\) d\.

Then by (26), s = R ~'n and we evaluate n explicitly.
Using the definition of the vector kT from Lemma 3, we
have

n =2n S (—-1.a",0") UDTY*(\) d\

T

- (27 /a,) S (a’, =1,07) UD"Y*(\) I

T 0T
+ 27 §—' (d” + (1/a,) JT){R_I]
- DUDTY*(N) d\

+ (27 /a}) S_ ((-1.a")d)[R™'D],
- UDTY2(\) dx
= BT + Bl + B] + Bi.

For BT using the definition of U and D, the nth element
of (—1, a’, 07) UDT is given by

((-1,a",07) UDT),, = A(e?) A(e )P

(B19)

+ AZ(ei)\) ei(p+n#1))\‘

Using parts a) and b) of Lemma B1, we then have

P

(B{)n = —03’p+n&1 - U:Vk=z+l GQpan+)—ik- (820)

For BJ using the definition of U and D, the nth element
of (a”, —1, 0") UD" is given by

((a”, =1,07) UD) = A*(e™?) e nt

+ A(e—i)\)A(ei)\)e—l(nol))\'

Using parts a) and b) of Lemma B1, we obtain

P
- (ot?'/ap) k—;*l (277 7O

(BI), =

- (Uf/ap)rn*l'
(B21)
For B] using (B16), it follows that
0T
Bl = (d” + (1@9&’)“4]3 (B22)
where B is given in (B18). For $,, we can write
B =Ce/ad | ((-r1an)a)

- [R™'],DUDTY (N} dX




and by (B16), it follows that

Bl = (1/a,) { 2ar,_ ]J[R"]PB. (B23)
Thus, s = R~ 'n where n is given by (B19)-(B23).

C. Evaluation of v*
By (25) and the definition of h = b + h, + hy; + hy4
[cf. (A13)]. we write

=2x S RTUR Y*(N) dX
+ 27 S h"Uhyy*(N\) d\
+ 27 S RTUR; ¢ (N) dh

+ 27 S h"Uh,y*(\) d\

=T, + T+ T, + T, (B24)

For T, we have

=2 S hT Uh\y*(N) dN
+21rS hTUR Y2(N) d\
+ 27 g RTUR Y (N) dN

+ 27r§ hIUR A(N) d\

= T” + T]2 + T|3 + T|4. (st)

Using (A13a)-(A13d) for h,, h,, h;, and h,, applying
Lemma B1, and using B, from (B19), we obtain

P
2 2
T||—-0u+0 +0r0+o Z ay Uuo

p

) a, oy — 0%4/(7(2 (8263)

k=0

p
+ oy glo aa, ; — 20%03@,} (B26b)
OT
Ty = (d" + (l/aP)JT)‘:Rq]B' (B26¢)

T = (l/a,)z[l_i a/rp_j][R”'] . (B26d)
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Similarly, for T, we write
Tz = T2| + Tzz + T23 + ng. (827)

Using (A13a)-(A13d), Lemma BI1, and §, from (B19),
we get

T =Ty (B28a)

P
T, = (l/a;){otya; + oY 2 al + olry — 030%‘/}

(B28b)

o’
T23=(dT+(1/ap)JT)[R—I]B2 (B28¢c)
Ty = (l/ap)[ 2 7 J][R—l]ppz' (B28d)

Using (A13c) for k3, we write

T

0
h’UDT[
R—l

T

T3=27rs ](d+(1/ap)d)1//2()\)d)\,

-%

but, by (26), we have that
T < 2r S RUDT(R™') Y 3(\) d);

thus,
=(0,s")(d + (1/a,) d). (B2
Using (A13d) for h,, we write

T, =27 S_ hTU[D’(R")T]p(l/ap)2

[ 2 ar,_ ,}\pz(x) dX.
As above, by (26), we obtain

T, = (sT)p(l/ap)z{ é‘o q, r,,_,}. (B30)

Thus, v? = L?_, T, where the expressions for T, are given
by (B25)-(B30).
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